مجموعة تكنولاب البهاء جروب
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

مجموعة تكنولاب البهاء جروب

تحاليل وتنقية ومعالجة المياه
 
الرئيسيةالبوابةأحدث الصورالتسجيلدخول
تنظيف وتطهير وغسيل واعادة تاهيل الخزانات


معمل تكنولاب البهاء جروب
 للتحاليل الكيميائية والطبية
والتشخيص بالنظائر المشعة
 للمخدرات والهرمونات والسموم
 وتحاليل المياه

مجموعة
تكنولاب البهاء جروب
لتصميم محطات الصرف الصناعى والصحى
لمعالجة مياه الصرف الصناعى والصحى
مجموعة تكنولاب البهاء جروب
المكتب الاستشارى العلمى
دراسات علمية كيميائية



معالجة الغلايات وانظمة البخار المكثف
معالجة ابراج التبريد المفتوحة
معالجة الشيللرات
مجموعة تكنولاب البهاء جروب
اسنشاريين
كيميائيين/طبيين/بكترولوجيين
عقيد دكتور
بهاء بدر الدين محمود
رئيس مجلس الادارة
استشاريون متخصصون فى مجال تحاليل وتنقية ومعالجة المياه
متخصصون فى تصنيع وتصميم كيماويات
معالجة الصرف الصناعى والصحى
حسب كل مشكلة كل على حدة
تصنيع وتحضير كيماويات معالجة المياه الصناعية
مؤتمرات/اجتماعات/محاضرات/فريق عمل متميز
صور من وحدات معالجة المياه


technolab el-bahaa group
TECHNOLAB EL-BAHAA GROUP
EGYPT
FOR
WATER
TREATMENT/PURIFICATION/ANALYSIS
CONSULTANTS
CHEMIST/PHYSICS/MICROBIOLIGIST
 
INDUSTRIAL WATER
WASTE WATER
DRINKING WATER
TANKS CLEANING
 
CHAIRMAN
COLONEL.DR
BAHAA BADR EL-DIN
0117156569
0129834104
0163793775
0174041455

 

 

 

تصميم وانشاء محطات صرف صناعى/waste water treatment plant design

technolab el-bahaa group
egypt
We are a consultants in water treatment with our chemicals as:-
Boiler water treatment chemicals
Condensated steam treatment chemicals
Oxygen scavenger treatment chemicals
Ph-adjustment treatment chemicals
Antiscale treatment chemicals
Anticorrosion treatment chemicals
Open cooling tower treatment chemicals
Chillers treatment chemicals
Waste water treatment chemicals
Drinking water purification chemicals
Swimming pool treatment chemicals
Fuel oil improver(mazote/solar/benzene)
technolab el-bahaa group
egypt
We are consultants in extraction ,analysis and trading the raw materials of mines as:-
Rock phosphate
32%-30%-28%-25%
Kaolin
Quartez-silica
Talcum
Feldspae(potash-sodumic)
Silica sand
Silica fume
Iron oxid ore
Manganese oxid
Cement(42.5%-32.5%)
Ferro manganese
Ferro manganese high carbon

 

water treatment unit design


 

وكلاء لشركات تركية وصينية لتوريد وتركيب وصيانة الغلايات وملحقاتها
solo agent for turkish and chinese companies for boiler production/manufacture/maintance

 

وكلاء لشركات تركية وصينية واوروبية لتصنيع وتركيب وصيانة ابراج التبريد المفتوحة

 

تصميم وتوريد وتركيب الشيللرات
design/production/maintance
chillers
ابراج التبريد المفتوحة
مجموعة تكنولاب البهاء جروب
المكتب الاستشارى العلمى
قطاع توريد خطوط انتاج المصانع
 
نحن طريقك لاختيار افضل خطوط الانتاج لمصنعكم
سابقة خبرتنا فى اختيار خطوط الانتاج لعملاؤنا
 
1)خطوط انتاج العصائر الطبيعية والمحفوظة والمربات
2)خطوط انتاج الزيوت الطبيعية والمحفوظة
3)خطوط انتاج اللبن الطبيعى والمحفوظ والمبستر والمجفف والبودرة
4)خطوط تعليب وتغليف الفاكهة والخضروات
5)خطوط انتاج المواسير البلاستيك والبى فى سى والبولى ايثيلين
6)خطوط انتاج التراى كالسيوم فوسفات والحبر الاسود
7)خطوط انتاج الاسفلت بانواعه
Coolمحطات معالجة الصرف الصناعى والصحى بالطرق البيولوجية والكيميائية
9)محطات معالجة وتنقية مياه الشرب
10)محطات ازالة ملوحة البحار لاستخدامها فى الشرب والرى
11)الغلايات وخطوط انتاج البخار الساخن المكثف
12)الشيللرات وابراج التبريد المفتوحة وخطوط انتاج البخار البارد المكثف
 
للاستعلام
مجموعة تكنولاب البهاء جروب
0117156569
0129834104
0163793775
 
القاهرة-شارع صلاح سالم-عمارات العبور-عمارة 17 ب
فلا تر رملية/كربونية/زلطيه/حديدية

وحدات سوفتنر لازالة عسر المياه

مواصفات مياه الشرب
Drinking water
acceptable
values

50

colour

acceptable

Taste

nil

Odour

6.5-9.2

ph

 

1 mg/dl

pb

5 mg/dl

as

50 mg/dl

cn

10 mg/dl

cd

0-100mg/dl

hg

8 mg/dl

f

45 mg/dl

N02

1 mg/dl

Fe

5 mg/dl

Mn

5.1 mg/dl

Cu

200 mg/dl

Ca

150 mg/dl

Mg

600 mg/dl

Cl

400 mg/dl

S04

200 mg/dl

Phenol

15 mg/dl

zn

 

 

الحدود المسموح به
ا لملوثات الصرف الصناعى
 بعد المعالجة
Acceptable
values
treated wate water
7-9.5

ph

25-37 c

Temp

40 mg/dl

Suspended solid

35 mg/dl

bod

3 mg/dl

Oil & grase

0.1 mg/dl

hg

0.02 mg/dl

cd

0.1 mg/dl

cn

0.5mg/dl

phenol

1.5 ds/m

conductivity

200 mg/dl

na

120 mg/dl

ca

56 mg/dl

mg

30 mg/dl

k

200 mg/dl

cl

150 mg/dl

S02

0.75 mg/dl

Fe

0.2 mg/dl

Zn

0.5 mg/dl

Cu

0.03 mg/dl

Ni

0.09 mg/dl

Cr

0.53 mg/dl

لb

0.15 mg/dl

pb

 





pipe flocculator+daf
plug flow flocculator
lamella settels

محطات تحلية مياه البحر بطريقة التقطير الومضى على مراحل
MSF+3.jpg (image)
محطات التقطير الومضى لتحلية مياه البحر2[MSF+3.jpg]
some of types of tanks we services
انواع الخزانات التى يتم تنظيفها
ASME Specification Tanks
Fuel Tanks
Storage Tanks
Custom Tanks
Plastic Tanks
Tank Cleaning Equipment
Double Wall Tanks
Septic Tanks
Water Storage Tanks
Fiberglass Reinforced Plastic Tanks
Stainless Steel Tanks
Custom / Septic
مراحل المعالجة الاولية والثانوية والمتقدمة للصرف الصناعى

صور مختلفة
من وحدات وخزانات معالجة الصرف الصناعى
 التى تم تصميمها وتركيبها من قبل المجموعة

صور
 من خزانات الترسيب الكيميائى والفيزيائى
 لوحدات معالجة الصرف الصناعى
المصممة من قبل المحموعة



technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group

technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group




مياه رادياتير اخضر اللون
بريستول تو ايه
انتاج شركة بريستول تو ايه - دمياط الجديدة
مجموعة تكنولاب البهاء جروب

اسطمبات عبوات منتجات شركة بريستول تو ايه-دمياط الجديدة

مياه رادياتير خضراء فوسفورية

من انتاج شركة بريستول تو ايه 

بترخيص من مجموعة تكنولاب البهاء جروب


زيت فرامل وباكم

DOT3



 

 المشاكل الكيميائية والطبيعية لاغشية ووحدات الار اوه(اغشية الضغط الاسموزى)

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
Admin
Admin


عدد المساهمات : 3762
تاريخ التسجيل : 15/09/2009
العمر : 57
الموقع : مصر

المشاكل الكيميائية والطبيعية لاغشية ووحدات الار اوه(اغشية الضغط الاسموزى) Empty
مُساهمةموضوع: المشاكل الكيميائية والطبيعية لاغشية ووحدات الار اوه(اغشية الضغط الاسموزى)   المشاكل الكيميائية والطبيعية لاغشية ووحدات الار اوه(اغشية الضغط الاسموزى) Emptyالثلاثاء مارس 13, 2012 1:55 am


RO Water Chemistry

by

general.dr

bahaa badr

technolab el-bahaa group

Alkalinity:

Alkalinity is comprised primarily of bicarbonate, carbonate and hydroxide ions.

Naturally
occurring alkalinity functions as the earth’s natural buffering system.

An example of this buffering
capability occurs when small doses of strong acids (e.g. acid rain) react with the alkalinity in water.

The
acid converts carbonates to bicarbonates and converts bicarbonates to carbon dioxide, with both
reactions resulting in very little change in the pH of the water.

It should be noted that dissolved carbon
dioxide gas will react with water to form a very weak carbonic acid, but this is not considered to be part of
total alkalinity since it has no acid buffering capacity.

Carbon dioxide and bicarbonate are in a balance
between the pH range of 4.2 to 4.5 at the low end and 8.2-8.4 at the high end.

At a pH of 4.2 to 4.5 or
lower, all alkalinity is in the form of carbon dioxide.

At a pH of 8.2 to 8.4, there is no carbon dioxide and
all alkalinity is bicarbonate. Bicarbonate and carbonate are in a balance between the pH range of 8.2 to
8.4 at the low end and 9.6 at the high end.

At a pH of 9.6, there is no carbon dioxide or bicarbonate, and
all alkalinity is carbonate.

As the pH increases above 9.6, hydroxyl alkalinity (due to the presence of the
hydroxide ion) starts to occur.

Most naturally occurring water sources have a pH between 6 and 8.4, so
the presence of hydroxides is the result of man-made activity.

Alkalinity, especially by boiler water
chemists, can be reported as M-Alkalinity and P-Alkalinity.

M-Alkalinity (also known as Total Alkalinity)
measures the amount of carbonate, bicarbonate and hydroxide present in terms of “ppm as calcium
carbonate”.

The M-Alkalinity measurement is based on a sulfuric acid titration using a Methyl orange
indicator that goes from yellow at a pH of 4.5 to orange at pH of 4.4 at the endpoint.

P-Alkalinity
measures the amount of carbonate and hydroxyl alkalinity present in terms of “ppm as calcium
carbonate”.

The P-Alkalinity measurement is based on a sulfuric acid titration using a Phenolphthalein
indicator that goes from pink at a pH of 8.3 to colorless at pH of 8.2 at the endpoint.


Author’s Note: A range of pH values have been reported in a number of published sources for the Malkalinity
(4.2 to 4.5) and P-alkalinity (8.2 to 8.5) titration endpoints.

The above values are the best
estimate.


Aluminum (Al):

Aluminum, based on its low solubility, is typically not found in any significant
concentrations in well or surface waters. Aluminum, when present in an RO feed water, is typically
colloidal in nature (not ionic) and is the result of alum carryover by an on-site or municipal clarifier or limesoftener.


Alum (aluminum sulfate) is a popular coagulant that is effective in the absorption and
precipitation of naturally occurring, negatively charged colloidal material (e.g. clay and silt) from surface
waters. Alum, when introduced into water, disassociates into trivalent aluminum and sulfate.

The
hydrated aluminum ion reacts with the water to form a number of complex hydrated aluminum hydroxides,
which then polymerize and starts absorbing the negatively charged colloids in water.

Fouling by
aluminum-based colloid carryover can occur, with alert levels for the RO designer ranging from 0.1 to 1.0
ppm aluminum in the feed water.

Aluminum chemistry is complicated by the fact that it is amphoteric.
Aluminum at low pH’s can exist as a positively charged trivalent cation or as an aluminum hydroxide
compound. Aluminum at high pH’s can exist as a negatively charged anionic compound.

Typically, the
range of least solubility for aluminum compounds is in the pH range of 5.5 to 7.5.
Ammonium (NH4): A monovalent cation.

Ammonium salts are very soluble and do not cause a RO
scaling problem.

The ammonium ion is the result of very soluble gaseous ammonia (NH3) being dissolved
in water.

Non-ionized ammonia ionizes in water to form the ammonium ion and hydroxide ion.

The
degree of ionization of ammonia to ammonium is dependent on pH, temperature, and the ionic strength of
the solution.

At higher pH the ammonia gas is prevalent, and being a gas, will not be rejected by a RO
(similar to carbon dioxide gas). At lower pH the ammonium ion is prevalent and is rejected by a RO.


Ammonia and ammonium exists in an equilibrium at varying relative concentrations in the general pH
range of 7.2 to 11.5.

Ammonium is typically not found in well water sources, having been converted by
bacterial action in soils to the transitory nitrite (NO2) ion and then oxidized into the more prevalent nitrate
ion.

Ammonium is found in surface water sources at low levels (up to 1 ppm as the ion), the result of
biological activity and the breakdown of organic nitrogen compounds.

Surface sources can be
contaminated with ammonium from septic systems, animal feed lot runoff, or agricultural runoff from fields
fertilized with ammonia or urea.

Ammonium is prevalent in municipal waste facilities with levels up to 20
ppm as the ion in the effluent, the result of high levels of organic nitrogen compound compounds and
biological activity.

Another source of ammonium is the result of adding ammonia to chlorine to form
biocidal chloramines.

Barium (Ba):

A divalent cation.

The solubility of barium sulfate (BaSO4) is low and can cause a RO
scaling problem in the back-end of a RO.

Barium sulfate solubility is lower with increasing sulfate levels
and decreasing temperatures. Typically, barium can be found in some well waters, with typical
concentrations less than 0.05 ppm to 0.2 ppm.

It is important that barium be measured with instruments
capable of 0.01 ppm (10 ppb) minimum detection levels. With saturation at 100%, super-saturation up to
6000% is typical with an antiscalant.

Bicarbonate (HCO3): A monovalent anion.

The solubility of calcium bicarbonate is low and can cause a
RO scaling problem in the back-end of a RO.

Calcium bicarbonate solubility is measured using LSI
(Langlier Saturation Index) for brackish waters or the Stiff-Davis Index for seawaters and is lower with
increasing temperature and increasing pH.

Bicarbonate

is one component of alkalinity and its
concentration is in a balance with carbon dioxide between the pH range of 4.4 and 8.2 and in a balance
with carbonate between the pH range of 8.2 and 9.6.
BOD (Biological Oxygen Demand): BOD is a non-specific test that measures the quantity of
“biologically-degradable” organic matter and is reported as “ppm as oxygen”. The test measures the
quantity of oxygen depletion resulting from the ability of common bacteria to digest organic matter during
a 5-day incubation period at 20o C.
Boron (B): Boron can be found in seawater at levels up to 5 ppm and at lower levels in brackish waters
where inland seas once existed. Boron is not a foulant. The removal of boron to ppb levels is an
important issue in the electronics industry as it adversely affects the process in some applications. The
removal of boron is important in the production of potable/irrigation water in seawater desalination, with
suggested limits of 0.5 ppm boron.

The element boron exists in equilibrium as the borate monovalent
anion B(OH)4
- at higher pH and as non-ionized boric acid B(OH)3 at lower pH.

The relative concentrations
of borate and boric acid are dependent on pH, temperature and salinity.

The borate ion becomes more
prevalent at higher pH, higher salinity and higher temperature.

The rejection of boron by RO is better for
the borate ion due to its charge.

The rejection of non-ionized boric acid is low due to its smaller size and
lack of electric charge.

Brackish Water:

Brackish water, in one sense, is defined as a fresh low TDS water source that
experiences a large increase in normal TDS due to seawater intrusion.

In the RO field, brackish water
can be defined as feed water with low to medium TDS levels (up to 10,000 to 15,000 ppm) that can be
treated with a “brackish RO element” designed for 600 psi maximum applied feed pressure.

Calcium (Ca):

A divalent cation. Calcium, along with magnesium, is a major component of hardness in
brackish water.

The solubility of calcium sulfate (CaSO4)(gypsum) is typically limited to 230% with the
use of an antiscalant.

The solubility of calcium carbonate is typically limited to a LSI (Langlier Saturation
Index) value of positive 1.8 to 2.5.

Carbon Dioxide (CO2):

Carbon dioxide is a gas that when dissolved in water reacts with the water to
form weak carbonic acid (H2CO3).

If a pure water was completely saturated with carbon dioxide, its
concentration would be about 1600 ppm and the pH would be about 4.0. A typical source for carbon
dioxide in natural waters is the result of a balance with bicarbonate alkalinity based on the pH of the
water.

The concentration of carbon dioxide in water is typically indirectly determined by graphical
comparison to the bicarbonate concentration and pH.

Carbon dioxide and the bicarbonate ion are in a
balance between the pH range of 4.4 and 8.2.

The alkalinity is all carbon dioxide at pH 4.4 and is all
bicarbonate at pH 8.4.

The RO design program calculates the carbon dioxide level based on the
bicarbonate level and pH of the water.

Carbon dioxide, being a gas, is not rejected or concentrated by a
RO membrane, therefore its concentration will the same in the feed, permeate and concentrate.

Acidifying the RO feed water will lower pH by converting bicarbonate to carbon dioxide.

Carbonate (CO3):

A divalent anion.

The solubility of calcium carbonate is low and can cause a RO
scaling problem in the back-end of a RO.

Calcium carbonate solubility is measured using LSI (Langlier
Saturation Index) for brackish waters or SDSI (Stiff-Davis Index) for seawaters and is lower with
increasing temperature and increasing pH.

Carbonate is one component of alkalinity and its
concentration is in a balance with bicarbonate between the pH range of 8.2 and 9.6. At a pH of 9.6 and
higher, there is no carbon dioxide or bicarbonate, with all alkalinity being in the carbonate form.

Cations and Anions: Cations are ions with a positive valence state (they are willing to accept electrons)
and have the ability to react with anions which are ions with a negative valence state (they have extra
electrons to share).

The sharing of electrons creates electroneutrality.

For example, the calcium ion is a
divalent cation and will combine with two monovalent chloride ions to form the electrically neutral salt
known as calcium chloride.

A balanced water analysis will have the same concentration of cations as
anions when reported as “ppm as calcium carbonate” or as meq/l.

Silica, a very weak anion, is not used
to calculate the ionic balance of cations and anions (though it is used in the calculation of TDS).

Chloride (Cl):

A monovalent anion. The solubility of chloride salts is high and does not create a RO
scaling problem.

Chloride, in seawater, is the prevalent anion. Chloride is the anion used to
automatically balance a RO feed water analysis.

The recommended upper limit for chloride in potable
water by the US EPA and WHO is 250 ppm based on taste issues.

COD (Chemical Oxygen Demand):

COD is a non-specific test that measures the quantity of both biodegradable
and non-biodegradable organic matter and is reported as “ppm as oxygen”.

The test
measures the ability of a hot chromic acid solution to oxidize organic matter.

Color:

Color is a non-specific test that measures the relative level of organic compounds in water based
on their contribution to adding color and is reported in APHA units relative to the platinum standard.

Conductivity:

Conductivity is a measurement of the ability of water to transmit electricity due to the
presence of dissolved ions. Absolute pure water with no ions will not conduct an electrical current.

Conductivity is measured by a conductivity meter and is reported as micromhos/cm or microSiemens/cm.

Conductivity is a convenient method of determining the level of ions in a water but is non-specific in what
the ions are.

The electrical conductance of ions will vary by ion and will decrease as the concentration of
ions increase.

TDS (Total Dissolved Salts) meters utilize conductivity measurements with a conversion
factor applied.

Conductivity can also be estimated using individual conversion factors from the reported
ion concentrations of a water analysis or by using a single conversion factor based on the sum of the ions
(TDS).

Carbon dioxide conductivity can be estimated by taking the square root of the ppm concentration
and then multiplying by 0.6.

The silica ion does not contribute to conductivity. The most accurate
conductivity readings for high quality RO permeate are obtained on-site since carbon dioxide levels, being
a gas, can vary when exposed to the atmosphere.

Fluoride (F):

A monovalent anion.

Fluoride is found naturally at low levels in some well waters, but
normally its presence is due to injection into municipal water to provide a residual up to 2.5 ppm for the
control of dental caries.

Fluoride levels in potable waters above 5 ppm can cause mottled and brittle
teeth.

The rejection of fluoride by a RO membrane is pH dependent.

Rejections with polyamide
membranes in the basic pH range can be greater than 99% due to fluoride being in the salt form.

Rejections in the acidic pH range can drop below 50% due to fluoride being in the acid form.

Grains (per gallon):

Ion exchange and boiler water chemists frequently report the concentration of
hardness as “Grains per Gallon (as calcium carbonate equivalents)”.

One Grain per U.S. Gallon (as
calcium carbonate) is equal to 17.1 ppm (as calcium carbonate).


Hydrogen Sulfide (H2S):

Hydrogen sulfide is a gas that causes the noticeable “rotten egg” smell in feed
waters, with a threshold odor level of 0.1 ppm and a noticeable offensive odor at 3-5 ppm.

Hydrogen
sulfide is readily oxidized to elemental sulfur by oxidants (e.g. air, chlorine or potassium permanganate).

Sulfur acts as a colloidal foulant and has a history of not being removed well by conventional multimedia
filtration.

The preferred RO system design suggests leaving the hydrogen sulfide in its gaseous form, let
it pass through the RO into the permeate, and then treat the permeate for its removal.

Ionic Strength:

The solubility of sparingly soluble salts increases with increasing feed TDS.

To account
for this effect in calculating the solubility of a salt (e.g. calcium sulfate, barium sulfate, strontium sulfate or
SDSI), the Ionic Strength of a water is calculated.

The Ionic Strength of each ion is derived by taking the
ppm concentration of each ion (as calcium carbonate) and multiplying each monovalent ion by 1 x 10-5
and each divalent ion by 2 x 10-5.

Summing the Ionic Strength of each ion then derives the total Ionic
Strength of the water.


Iron (Fe):

Iron is a water contaminant that takes two major forms. The water-soluble form is known as
the ferrous state and has a + 2 valence state.

In non-aerated well waters ferrous iron behaves much like
calcium or magnesium hardness in that it can be removed by softeners or its precipitation in the back end
of the RO system can be controlled by the use of a dispersant chemical in an RO feed water.

The waterinsoluble
form is known as the ferric state and has a + 3 valence state.

Typically, RO manufacturers will
recommend that combined iron levels be less than 0.05 ppm in the RO feed.

If all iron is in the soluble
ferrous form, iron levels up to 0.5 ppm in the feed can be tolerated if the pH is less than 7.0 (though an
iron dispersant is recommended).

The introduction of air into water with soluble ferrous iron will result in
the oxidation to insoluble ferric iron.

Soluble iron can be found in deep wells, but can be converted into
the more troublesome insoluble iron by the introduction of air by being placed in tanks or by leaky pump
seals.

Soluble iron can be treated with dispersants or can be removed by iron filters, softeners or lime
softening.

Insoluble ferric iron oxides or ferric hydroxides, being colloidal in nature, will foul the front end
of the RO system.

Sources of insoluble iron are aerated well waters, surface sources, and iron scale from
unlined pipe and tanks.

Insoluble iron can be removed by iron filters, lime softening, softeners (with
limits), ultrafiltration (with limits) and multimedia filtration with polyelectrolyte feed (with limits).


Precautions are required with the use of potassium permanganate in manganese greensand iron filters in
that potassium permanganate is an oxidant that could damage any polyamide membrane. Precautions
are also required with a cationic polyelectrolyte in that they can irreversibly foul a negatively charged
polyamide membrane.

Corrosion proof vessels and piping (e.g. FRP, PVC or stainless steels) are
recommended for all RO systems, RO pretreatment, and distribution piping coming to the RO system.


Iron as foulant will quickly increase RO feed pressure requirements and increase permeate TDS.

In
some cases, the presence of iron can create a bio-fouling problem by being the energy source for ironreducing
bacteria.

Iron-reducing bacteria can cause the formation of a slimy biofilm that can plug the RO
feed path.


LSI (Langlier Saturation Index):

LSI is a method of reporting the scaling or corrosive potential of low
TDS brackish water based on the level of saturation of calcium carbonate.

LSI is important to boiler water
and municipal plant chemists in determining whether a water is corrosive (has a negative LSI) or will tend
to scale calcium carbonate (has a positive LSI).

LSI is important to RO chemists as a measurement of
the scaling potential for calcium carbonate.

The LSI value is calculated by subtracting the calculated pH
of saturation of calcium carbonate from the actual feed pH.

Calcium carbonate solubility decreases with
increasing temperature (as evidenced by the liming of a teakettle), higher pH, higher calcium
concentration, and higher alkalinity levels.

The LSI value can be lowered by reducing pH by the injection
of an acid (typically sulfuric or hydrochloric) into the RO feed water.

A recommended target LSI in the RO
concentrate is negative 0.2 (which indicates that the concentrate is 0.2 pH units below the point of
calcium carbonate saturation).

A negative 0.2 LSI allows for pH excursions in actual plant operation.

A
polymer-based antiscalant can also be used to inhibit the precipitation of calcium carbonate.

Some
antiscalant suppliers have claimed the efficacy of their product up to a positive LSI value of 2.5 in the RO
concentrate (though a more conservative design LSI level is +1.8).

Sodium hexametaphosphate, an
inorganic antiscalant, was used in the early days of RO but the maximum concentrate LSI was + 0.5 and
it had to be made in short-lived batches as the air easily oxidized it.


Magnesium (Mg):

A divalent cation.

Magnesium can account for about a third of the hardness in a
brackish water, but can have a concentration five times higher than calcium in sea water.

The solubility of
magnesium salts is high and typically does not cause a scaling problem in RO systems.

Manganese (Mn):

Manganese is a water contaminant present in both well and surface waters, with
levels up to 3 ppm.

Manganese, like iron, can be found in organic complexes in surface waters.

In
oxygen-free water, it is soluble.

In the oxidized state, it is insoluble and usually in the form of black
manganese dioxide (MnO2) precipitate.

An alert level for potential manganese fouling in a RO aerated
RO feed waters is 0.05 ppm.

Drinking water regulations limit manganese to 0.05 ppm due to its ability to
cause black stains.

Dispersants used to control iron fouling can be used to help control manganese
fouling.


Meq/l:

A method of reporting the concentration or “equivalent” weight of an ion or substance in a given
volume of water as milli-equivalents per liter.

Meq/l is calculated by dividing the mg/l by the equivalent
weight of the ion or substance.

Reporting the concentration of ions as meq/l is popular by RO chemists
for determining whether a water analysis is “balanced” where the sum of the cations equals the sum of
the anions.

Mg/l: A method of reporting the “actual” weight (milligrams) of an ion or substance in a given volume of
water (liter).

For dilute solutions, mg/l and ppm are equivalent. For example, a 1,000 mg/l (ppm) sodium
chloride solution would result in a residue of 1,000 mg of NaCl after evaporation of one liter of water.

RO
chemists use mg/l frequently in the calculation of TDS.


Nitrate (NO3):

A monovalent anion. Nitrate salts are highly soluble and do not cause a RO scaling
problem.

Nitrate, along with ammonia gas and ammonium, is a nitrogen-based ion whose presence is
tied with nature’s nitrogen cycle.

The primary sources of nitrogen introduction in a feed water come from
decomposing animal and plant waste, septic systems, animal feed lot runoff, or agricultural field runoff
from fields fertilized with ammonia.

In well water sources, ammonia and ammonium are not found, having
been converted to the transitory nitrite ion by certain types of bacteria in soils and then oxidized into the
more prevalent nitrate ion.

Frequently, nitrate concentrations are reported as “ppm as nitrogen” in water
analysis and not as “ppm as nitrate” as required for RO projections.

To convert “ppm as nitrogen” to “ppm
as nitrate”, multiply “ppm as nitrogen” by 4.43.

The US EPA has set a maximum recommended limit of
nitrate at 10 ppm as nitrogen (44.3 ppm as nitrate) for potable drinking water.

Nitrates are harmful in that
they compete with oxygen for carrying sites in blood hemoglobin.

The reduced oxygen content can result
in the “blue-baby syndrome” which is why babies and pregnant women are at higher risk to the effects of
nitrates.

Osmotic Pressure:

The pressure phenomena resulting from the difference of salt concentrations across
a RO membrane.

Increasing TDS levels result in increased osmotic pressure.

The RO feed pump has to
generate sufficient pressure to overcome this osmotic pressure before permeate is produced.

A rough
rule of thumb is that 1,000 ppm TDS equals 11 psi osmotic pressure.

A brackish water at 550 ppm TDS
produces 5 psi osmotic pressure.

A seawater at 35,000 ppm TDS produces 385 psi osmotic pressure.

pH:

The pH of the feed water measures the acidity or basicity. A pH of 7.0 is considered neutral.

A pH
between 0.0 and 7.0 is acidic.

A pH between 7.0 and 14.0 is basic.

To the analytical chemist, pH is a
method of expressing hydrogen ion concentration in terms of the power of 10 with the pH value being the
negative logarithm of the hydrogen ion concentration.

To the water chemist, pH is important in defining
the alkalinity equilibrium levels of carbon dioxide, bicarbonate, carbonate and hydroxide ions.

The
concentrate pH is typically higher than the feed due to the higher concentration of bicarbonate/carbonate
ions relative to the concentration of carbon dioxide.

The RODESIGN program allows the user to adjust
the pH of the feed water using hydrochloric and sulfuric acid. Lowering the feed pH with acid results in a
lower LSI (Langlier Saturation Index) value, which reduces the scaling potential for calcium carbonate.

Feed and concentrate (reject) pH can also effect the solubility and fouling potential of silica, aluminum,
organics and oil.

Variations in feed pH can also affect the rejection of ions. For example, fluoride, boron
and silica rejection are lower when the pH becomes more acidic.

Potassium (K):

A monovalent cation.

It is typically found at much lower concentrations than sodium.

The salts of potassium are highly soluble and do not cause a RO scaling problem.

ppb (parts per billion):

A method to report the concentration of an ion or substance in a water.

The
following conversions apply for dilute waters with a specific gravity of 1.0:

One ppb is equal to one
microgram per liter (ug/L). One ppm is equal to 1,000 ppb.

ppm (parts per million):

A method for reporting the concentration of an ion or substance in a water.

The following conversions apply for dilute waters with a specific gravity of 1.0: One ppm is equal to one
mg/L. One Grain per U.S. Gallon is equal to 17.1 ppm.

One Pound per 1,000 U.S. Gallons is equal to
120 ppm. A one per cent solution is equal to 10,000 ppm. One ppm is equal to 1,000 ppb.

ppm as CaCO3: A method of reporting the concentration or “equivalent” weight of an ion or substance in
a given volume of water as “ppm as calcium carbonate”.

Reporting the concentration of ions as “ppm as
calcium carbonate” is popular by ion exchange chemists for the calculation of ionic loading of cation or
anion resins.

It is also popular in determining whether a water analysis is “balanced” where the sum of
the cations equals the sum of the anions when the concentration of the ions are reported as calcium
carbonate equivalents.

Water chemists use the concept of “equivalency” when balancing cation and
anion electroneutrality levels since ions combine in nature based on their valence state and available
electrons, not on their “actual” weight.

Calcium carbonate was arbitrarily picked because its molecular
weight is 100 and its equivalent weight is 50 since its divalent.

The formula to convert an ion reported as
“mg/l as the ion” to “ppm as calcium carbonate” is to multiply “mg/l as the ion” times the ratio of the
“equivalent weight of the ion” by the “equivalent weight of calcium carbonate”.

As an example, a water with sodium at 100 ppm as calcium carbonate and chloride at 100 ppm as
calcium carbonate are in ionic balance since every sodium ion has a corresponding chloride ion.


However, sodium concentration at 100 ppm as calcium carbonate is only 47 mg/l of actual substance
(since its equivalent weight is 23.0) and 100 ppm of chloride as calcium carbonate is only 71 mg/l of
actual substance (since its equivalent weight is 35.5).

The calculated TDS of this solution is 118 mg/l.

SDI (Silt Density Index):

An empirical test developed for membrane systems to measure the rate of
fouling of a 0.45 micron filter pad by the suspended and colloidal particles in a feed water.

This test
involves the time required to filter a specified volume of feed at a constant 30 psi at time zero and then
after 5 minutes, 10 minutes and 15 minutes of continuous filtration.

Typical RO element warranties list a
maximum SDI of 4.0 at 15 minutes for the feed water.

If the SDI test is limited to only 5 or 10 minute
readings due to plugging of the filter pad, the user can expect a high level of fouling for the RO.

Deep
wells typically have SDI’s of 3 or less and turbidities less than one with little or no pretreatment.

Surface
sources typically require pretreatment for removal of colloidal and suspended solids to achieve
acceptable SDI and turbidity values.

SDSI (Stiff Davis Saturation Index):

SDSI, in similar fashion as LSI, is a method of reporting the scaling
or corrosion potential of high TDS seawater based on the level of saturation of calcium carbonate.

The
primary difference between SDSI for high TDS seawater and LSI for low TDS brackish water is the effect
that increasing ionic strength has on increasing solubility.

The solubility of sparingly soluble salts increase
with higher TDS and ionic strength, based on the theory that a denser ion population interferes in the
formation and/or precipitation of the sparingly soluble salt.

Silica (SiO2): Silica (silicon dioxide), in some cases, is an anion.

The chemistry of silica is a complex
and somewhat unpredictable subject.

In similar fashion as TOC reports the total concentration of
organics (as carbon) without detailing what the organic compounds are, silica reports the total
concentration of silicon (as silica) without detailing what the silicon compounds are.

The “Total Silica”
content of a water is composed of “Reactive Silica” and “Unreactive Silica”. Reactive silica (e.g. silicates
SiO4 ) is dissolved silica that is slightly ionized and has not been polymerized into a long chain.

Reactive
silica is the form that RO and ion exchange chemists hope for.

Reactive silica is the form of silica to be
used in RO projection programs.

Reactive silica, though it has anionic characteristics, is not counted as
an anion in terms of balancing a water analysis but it is counted as a part of total TDS.

Unreactive silica
is polymerized or colloidal silica, acting more like a solid than a dissolved ion.

Silica, in the colloidal form,
can be removed by a RO but it can cause colloidal fouling of the front-end of a RO. Colloidal silica, with
sizes as small as 0.008 micron can be measured empirically by the SDI (Silt Density Index) test, but only
that portion that is larger than 0.45 micron or larger.

Particulate silica compounds (e.g. clays, silts and
sand) are usually 1 micron or larger and can be measured using the SDI test. Polymerized silica, which
uses silicon dioxide as the building block, exists in nature (e.g. quartzes and agates).

Silica, in the
polymerized form, also results from exceeding the reactive silica saturation level.

The solubility of
reactive silica is typically limited to 200-300% with the use of a silica dispersant.

Reactive silica solubility
increases with increasing temperature, increases at a pH less than 7.0 or more than 7.8, and decreases
in the presence of iron which acts as a catalyst in the polymerization of silica.

Silica rejection is pH
sensitive, with increasing rejection at a more basic pH as the reactive silica exists more in the salt form
than in the acidic form.

Sodium (Na):

A monovalent cation.

The solubility of sodium salts is high and does not cause a RO
scaling problem.

Sodium, in seawater, is the prevalent cation.

Sodium is the cation used to automatically
balance a RO feed water analysis.

Dietary sodium levels can range from 2000 mg/l for low-sodium diets
to 3500 mg/l for average consumption levels.

The US EPA has set a DWEL (Drinking Water Equivalent
Limit) of 20 mg/l for potable water but is reevaluating the limit as to low.

Daily consumption of 2 liters
(0.53 gallons) of water with 100 mg/l of sodium would be only 200 mg.

A relatively “hard water” with 10
grains per gallon (171.2 mg/L) of hardness (as calcium carbonate) results in only an additional 79 mg/L of
sodium when softened.


Strontium (Sr):

A divalent cation.

The solubility of strontium sulfate is low and can cause a RO scaling
problem in the back-end of a RO. Strontium sulfate solubility is lower with increasing sulfate levels and
decreasing temperatures.

Typically, strontium can be found in some well waters where lead ores are also
present, with typical concentrations less than 15 ppm.

With saturation at 100%, super-saturation up to
800% is typical with an antiscalant.

Sulfate (SO4):

A divalent anion.

The solubility of calcium, barium and strontium sulfate is low and can
cause a RO scaling problem in the back-end of a RO.

The solubility of these sparingly soluble salts is
lower with decreasing temperature.

The recommended upper limit for sulfate in potable water is 250 ppm
based on taste issues.


TDS (Total Dissolved Solids):

TDS, in water treatment, is the inorganic residue left after the filtration of
colloidal and suspended solids and then the evaporation of a known volume of water.

TDS is reported as
ppm or mg/l. TDS, in RO design projections, is determined by calculation using the sum of the cations,
anions and silica ions (with the ion reported “as such”, not “as calcium carbonate”).

Feed or permeate
TDS, in RO design projections, can also be estimated by applying a conversion factor to the conductivity
of the solution. TDS can also be determined in the field by use of a TDS meter.

TDS meters measure
the conductivity of the water and then apply a conversion factor that reports TDS to a known reference
solution (e.g. ppm sodium chloride or ppm potassium chloride).

The user is cautioned that TDS levels for
waters with a mixture of ions and determined from conductivity measurements may not agree with TDS
calculated as a sum of the ions.

As a rough rule of thumb, one ppm of TDS (when referenced to a NaCl
solution) correlates to a conductivity of two micromhos/cm (microSiemens/cm).

Temperature: Temperature is a critical design parameter.

It has significant effects on feed pump
pressure requirements, hydraulic flux balance between stages, permeate quality, and solubility of
sparingly soluble salts.

As a rough rule of thumb, every 10-degree Fahrenheit decrease in feed
temperature increases the feed pump pressure requirement 15 %.

The hydraulic flux balance between
stages (or in other words the amount of permeate produced by each stage) is impacted by temperature.

When water temperature increases, the elements located in the front end of the system produce more
permeate which results in reduced permeate flow by the elements located at the rear of the system.

A
better hydraulic flux balance between stages occurs at colder temperatures. At warmer temperatures,
salt passage increases due to the increased mobility of the ions through the membrane.

Warmer
temperatures decrease the solubility of calcium carbonate.

Colder temperatures decrease the solubility
of calcium sulfate, barium sulfate, strontium sulfate, and silica.

TOC (Total Organic Carbon):

TOC, an acronym for Total Organic Carbon or Total Oxidizable Carbon, is
a non-specific test that measures the amount of carbon bound in organic material and is reported in units
of “ppm as carbon”.

Since the TOC only measures the amount of carbon in organic matter, the actual
weight of the organic mass can be up to 3 times higher in natural surface waters.

Organics are
compounds that contain carbon (with the exception of carbon dioxide, bicarbonate and carbonate).

In
water treatment, organics can be classified as naturally occurring or man-made. Naturally occurring
organic matter are typically negatively-charged colloids or suspended solids, comprised of tannins,
lignin’s, water soluble humic acid compounds resulting from the decay of certain vegetative matter, or
fulvic acid compounds resulting from the decay of certain vegetative matter.

Naturally occurring organic
material can be a foulant to RO membranes, particularly the negatively charged composite polyamides.
Neutrally charged RO membranes (e.g. neutrally charged composite polyamides and cellulose acetate)
are more resistant to organic fouling.

A RO will reject organic compounds. Generally, organic
compounds with a molecular weight greater than 200 are rejected at levels greater than 99%.

The
rejection of compounds with molecular weights less than 200 will vary based on molecular weight, shape
and ionic charge.

As a rough rule of thumb, alert levels for potential organic fouling in natural water
sources are TOC at 3 ppm, BOD at 5 ppm, and COD at 8 ppm.


Turbidity:

Turbidity is a suspension of fine colloidal particles that do not readily settle out of solution and
can result in a “cloudiness”.

Turbidity is determined by a Nepholometer that measures the relative
amount of light able to pass through a solution.

Turbidity is reported as NTU (Nepholometric Turbidity
Units).

Typical RO element warranties list a maximum of 1.0 NTU for the feed water.
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://technolabelbahaagp.yoo7.com
 
المشاكل الكيميائية والطبيعية لاغشية ووحدات الار اوه(اغشية الضغط الاسموزى)
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» التناضح العكسى باغشية الضغط الاسموزى
» خطوات تصنيع وحدات تحلية وتنقية ومعالجة المياه بنظام اغشية الضغط الاسموزى فى مصانعنا
» كيفية تقليل كمية الاملاح المذابة للماء(اولا/جودة المياه والمشكلات المؤثرة بها)
» طرق معالجة المياه(الغليان/التقطير/غشاء الضغط الاسموزى)
» شرح مبسط لوحدات الضغط الاسموزى مقدمة من المهندس/احمد رشاد

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
مجموعة تكنولاب البهاء جروب :: قسم معالجة وتنقية وتحاليل المياه :: تصميم وتركيب وتوريد وحدات معالجة المياه-
انتقل الى: