مجموعة تكنولاب البهاء جروب
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

مجموعة تكنولاب البهاء جروب

تحاليل وتنقية ومعالجة المياه
 
الرئيسيةالبوابةأحدث الصورالتسجيلدخول
تنظيف وتطهير وغسيل واعادة تاهيل الخزانات


معمل تكنولاب البهاء جروب
 للتحاليل الكيميائية والطبية
والتشخيص بالنظائر المشعة
 للمخدرات والهرمونات والسموم
 وتحاليل المياه

مجموعة
تكنولاب البهاء جروب
لتصميم محطات الصرف الصناعى والصحى
لمعالجة مياه الصرف الصناعى والصحى
مجموعة تكنولاب البهاء جروب
المكتب الاستشارى العلمى
دراسات علمية كيميائية



معالجة الغلايات وانظمة البخار المكثف
معالجة ابراج التبريد المفتوحة
معالجة الشيللرات
مجموعة تكنولاب البهاء جروب
اسنشاريين
كيميائيين/طبيين/بكترولوجيين
عقيد دكتور
بهاء بدر الدين محمود
رئيس مجلس الادارة
استشاريون متخصصون فى مجال تحاليل وتنقية ومعالجة المياه
متخصصون فى تصنيع وتصميم كيماويات
معالجة الصرف الصناعى والصحى
حسب كل مشكلة كل على حدة
تصنيع وتحضير كيماويات معالجة المياه الصناعية
مؤتمرات/اجتماعات/محاضرات/فريق عمل متميز
صور من وحدات معالجة المياه


technolab el-bahaa group
TECHNOLAB EL-BAHAA GROUP
EGYPT
FOR
WATER
TREATMENT/PURIFICATION/ANALYSIS
CONSULTANTS
CHEMIST/PHYSICS/MICROBIOLIGIST
 
INDUSTRIAL WATER
WASTE WATER
DRINKING WATER
TANKS CLEANING
 
CHAIRMAN
COLONEL.DR
BAHAA BADR EL-DIN
0117156569
0129834104
0163793775
0174041455

 

 

 

تصميم وانشاء محطات صرف صناعى/waste water treatment plant design

technolab el-bahaa group
egypt
We are a consultants in water treatment with our chemicals as:-
Boiler water treatment chemicals
Condensated steam treatment chemicals
Oxygen scavenger treatment chemicals
Ph-adjustment treatment chemicals
Antiscale treatment chemicals
Anticorrosion treatment chemicals
Open cooling tower treatment chemicals
Chillers treatment chemicals
Waste water treatment chemicals
Drinking water purification chemicals
Swimming pool treatment chemicals
Fuel oil improver(mazote/solar/benzene)
technolab el-bahaa group
egypt
We are consultants in extraction ,analysis and trading the raw materials of mines as:-
Rock phosphate
32%-30%-28%-25%
Kaolin
Quartez-silica
Talcum
Feldspae(potash-sodumic)
Silica sand
Silica fume
Iron oxid ore
Manganese oxid
Cement(42.5%-32.5%)
Ferro manganese
Ferro manganese high carbon

 

water treatment unit design


 

وكلاء لشركات تركية وصينية لتوريد وتركيب وصيانة الغلايات وملحقاتها
solo agent for turkish and chinese companies for boiler production/manufacture/maintance

 

وكلاء لشركات تركية وصينية واوروبية لتصنيع وتركيب وصيانة ابراج التبريد المفتوحة

 

تصميم وتوريد وتركيب الشيللرات
design/production/maintance
chillers
ابراج التبريد المفتوحة
مجموعة تكنولاب البهاء جروب
المكتب الاستشارى العلمى
قطاع توريد خطوط انتاج المصانع
 
نحن طريقك لاختيار افضل خطوط الانتاج لمصنعكم
سابقة خبرتنا فى اختيار خطوط الانتاج لعملاؤنا
 
1)خطوط انتاج العصائر الطبيعية والمحفوظة والمربات
2)خطوط انتاج الزيوت الطبيعية والمحفوظة
3)خطوط انتاج اللبن الطبيعى والمحفوظ والمبستر والمجفف والبودرة
4)خطوط تعليب وتغليف الفاكهة والخضروات
5)خطوط انتاج المواسير البلاستيك والبى فى سى والبولى ايثيلين
6)خطوط انتاج التراى كالسيوم فوسفات والحبر الاسود
7)خطوط انتاج الاسفلت بانواعه
Coolمحطات معالجة الصرف الصناعى والصحى بالطرق البيولوجية والكيميائية
9)محطات معالجة وتنقية مياه الشرب
10)محطات ازالة ملوحة البحار لاستخدامها فى الشرب والرى
11)الغلايات وخطوط انتاج البخار الساخن المكثف
12)الشيللرات وابراج التبريد المفتوحة وخطوط انتاج البخار البارد المكثف
 
للاستعلام
مجموعة تكنولاب البهاء جروب
0117156569
0129834104
0163793775
 
القاهرة-شارع صلاح سالم-عمارات العبور-عمارة 17 ب
فلا تر رملية/كربونية/زلطيه/حديدية

وحدات سوفتنر لازالة عسر المياه

مواصفات مياه الشرب
Drinking water
acceptable
values

50

colour

acceptable

Taste

nil

Odour

6.5-9.2

ph

 

1 mg/dl

pb

5 mg/dl

as

50 mg/dl

cn

10 mg/dl

cd

0-100mg/dl

hg

8 mg/dl

f

45 mg/dl

N02

1 mg/dl

Fe

5 mg/dl

Mn

5.1 mg/dl

Cu

200 mg/dl

Ca

150 mg/dl

Mg

600 mg/dl

Cl

400 mg/dl

S04

200 mg/dl

Phenol

15 mg/dl

zn

 

 

الحدود المسموح به
ا لملوثات الصرف الصناعى
 بعد المعالجة
Acceptable
values
treated wate water
7-9.5

ph

25-37 c

Temp

40 mg/dl

Suspended solid

35 mg/dl

bod

3 mg/dl

Oil & grase

0.1 mg/dl

hg

0.02 mg/dl

cd

0.1 mg/dl

cn

0.5mg/dl

phenol

1.5 ds/m

conductivity

200 mg/dl

na

120 mg/dl

ca

56 mg/dl

mg

30 mg/dl

k

200 mg/dl

cl

150 mg/dl

S02

0.75 mg/dl

Fe

0.2 mg/dl

Zn

0.5 mg/dl

Cu

0.03 mg/dl

Ni

0.09 mg/dl

Cr

0.53 mg/dl

لb

0.15 mg/dl

pb

 





pipe flocculator+daf
plug flow flocculator
lamella settels

محطات تحلية مياه البحر بطريقة التقطير الومضى على مراحل
MSF+3.jpg (image)
محطات التقطير الومضى لتحلية مياه البحر2[MSF+3.jpg]
some of types of tanks we services
انواع الخزانات التى يتم تنظيفها
ASME Specification Tanks
Fuel Tanks
Storage Tanks
Custom Tanks
Plastic Tanks
Tank Cleaning Equipment
Double Wall Tanks
Septic Tanks
Water Storage Tanks
Fiberglass Reinforced Plastic Tanks
Stainless Steel Tanks
Custom / Septic
مراحل المعالجة الاولية والثانوية والمتقدمة للصرف الصناعى

صور مختلفة
من وحدات وخزانات معالجة الصرف الصناعى
 التى تم تصميمها وتركيبها من قبل المجموعة

صور
 من خزانات الترسيب الكيميائى والفيزيائى
 لوحدات معالجة الصرف الصناعى
المصممة من قبل المحموعة



technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group

technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group


technolab el-bahaa group




مياه رادياتير اخضر اللون
بريستول تو ايه
انتاج شركة بريستول تو ايه - دمياط الجديدة
مجموعة تكنولاب البهاء جروب

اسطمبات عبوات منتجات شركة بريستول تو ايه-دمياط الجديدة

مياه رادياتير خضراء فوسفورية

من انتاج شركة بريستول تو ايه 

بترخيص من مجموعة تكنولاب البهاء جروب


زيت فرامل وباكم

DOT3



 

 FLUORIDE REMOVAL BY ACTIVATED ALUMINA/ازالة الفلوريد بالالومينا النشطة المحببة

اذهب الى الأسفل 
كاتب الموضوعرسالة
Admin
Admin
Admin


عدد المساهمات : 3762
تاريخ التسجيل : 15/09/2009
العمر : 57
الموقع : مصر

FLUORIDE REMOVAL BY ACTIVATED ALUMINA/ازالة الفلوريد بالالومينا النشطة المحببة Empty
مُساهمةموضوع: FLUORIDE REMOVAL BY ACTIVATED ALUMINA/ازالة الفلوريد بالالومينا النشطة المحببة   FLUORIDE REMOVAL BY ACTIVATED ALUMINA/ازالة الفلوريد بالالومينا النشطة المحببة Emptyالخميس ديسمبر 30, 2010 2:43 pm

FLUORIDE REMOVAL BY ACTIVATED ALUMINA
by
colonel.dr
bahaa badr
chemical consultant

Introduction

Fluorides are found in the waste discharges from process streams in a number of industries. Significant amounts of fluoride come from the following: glass manufacturers, electroplating operations, steel and aluminum, pesticides and fertilizer, groundwater and the semiconductor industry. The original fluoride effluent levels can vary over a large range, and restrictions on final effluent level depend on place of disposal. When there is any risk of fluoride seeping back to water supplies, a limitation of about one ppm fluoride is normal. Apart from treatment of industrial waste streams, the other main application of fluoride removal is the treatment of municipal water supplies to reduce the fluoride content to 1 ppm or less.

High levels of fluoride are generally reduced by precipitation of CaF2 with lime. However, the solubility of CaF2 is such that ~8 ppm fluoride remains in distilled water, and in industrial water, residual fluoride can be considerably higher. Since pollution control boards are requiring effluent limits of 1 ppm fluoride in many cases, these saturated CaF2 solutions must undergo further treatment.

Reports in the literature suggest that activated alumina is the best way to reduce fluoride levels down to below 1 ppm. If the initial fluoride content exceeds 15 - 20 ppm, however, a prior treatment with lime to reduce the fluoride and prevent rapid saturation of the alumina will be economically advantageous.

Several laboratory studies have been reported. They are all in agreement that fluoride can be removed below one ppm by adsorption on alumina. Some results are not quantitative, and others are not in agreement over the amount of fluoride that can be removed, or the best method of regeneration, etc. A comprehensive literature review of fluoride removal has been published in German. A more recent article summarizes fluoride removal technology; this includes cost estimate data for the use of alumina, but it is based on laboratory scale work.

A pilot scale operation using alumina is described by Zolotva and is reported as operating successfully. While a number of plant operations are referred to in the literature, most are not described in detail. An exception is a water purification plant in Kansas. The size of the plant, mode of operation and overall cost of treatment are discussed in considerable detail.

Another benefit of using activated alumina in water treatment is its arsenic removal capability. Current federal limitation on arsenic in drinking water is 10 ppb. Such levels are reported to have been easily achieved using alumina. This paper will focus on the regenerable alumina, although, Tramfloc, Inc. has offered the disposable grade since 1998.

It is interesting to note the type of physical properties of the activated alumina are never discussed in these articles, although they may have a significant effect upon the fluoride or arsenic removal performance. Other factors likely to have an effect upon alumina performance are flow rate, other ions in the water to be treated, pH of the water, and the method and conditions of regeneration.

This bulletin summarizes the performance of Tramfloc’s Activated Alumina in removing fluoride from aqueous streams. The variables mentioned above are considered to some degree, but obviously not all aspects of fluoride from different streams have been considered. The information is intended to give a general idea of the fluoride removal capabilities of alumina. For all but the simplest systems it is recommended that a small scale test be carried out with the particular stream to be treated.

Activated Alumina

The granular activated alumina used in the evaluations discussed in this report is 14 X 28 grind activated alumina (AA). This is a transition alumina with a high surface area (>300 m2/g), which makes it especially suited for adsorption of certain species. It is a fairly high purity alumina with a pore volume of ~0.5 cc/gm and a bulk density of 46 lbs./ft3. The 14 X 28 S product is a similar activated alumina but in a spherical form. The granular alumina has the advantage of being available in smaller sizes, making the internal active surface of the alumina more readily available. However, the spherical alumina has the advantage of a lower pressure drop in packed bed (i.e., down flow) systems. The fluoride removal data described were obtained with laboratory scale experiments using 14 x 28 mesh size granular alumina in a packed column.

Pretreatment of Activated Alumina

The efficiency of the activated alumina for adsorbing fluoride is generally poor on the first adsorption cycle unless the alumina is pretreated. A pretreatment which involves allowing a dilute aluminum sulfate solution (~29 g Al2 (SO4)3 •18 H2O per liter) to remain in contrast with the alumina for 1 hour is found to be particularly satisfactory. The dramatic improvement of treated over untreated alumina . This pretreatment is very important if the alumina is being used on a once-through basis or where good performance is necessary on the first cycle. In a cyclic system the regeneration procedures described later will activate the surface for subsequent adsorption cycles.

Fluoride Removal From Neutral Solutions

The effectiveness of alumina in removing fluoride from aqueous NaF . given for initial fluoride concentrations of 10 and 20 ppm. The fluoride level is readily reduced to ~0.2 ppm in both cases. The fluoride capacity of the alumina is slightly greater for the 10 ppm level, but in both cases it is around 1.5%. These data are for alumina pretreated with aluminum sulfate; note the poor performance of the untreated alumina.

Fluoride removal from a saturated calcium fluoride solution .
This calcium fluoride solution is of special interest because it is typical of the residual after removing high levels of fluoride by precipitation with lime. This feed solution was made up by dissolving excess calcium fluoride in deionized water; the fluoride level was ~8 ppm. The fluoride in the effluent after passing through the alumina column was 0.2 ppm or less, and the capacity of the alumina was about 1.5%. Again note the poor performance of the alumina which was not pretreated with aluminum sulfate.

Fluoride Removal From Acidic Solutions

Two solutions containing hydrofluoric acid in deionized water were used to evaluate fluoride removal at lower pH. One contained 9 ppm fluoride (pH 3.63) and the other 25 ppm fluoride (pH 3.35). The fluoride removal curves are shown in Figure 3. The fluoride in the effluent was less than 0.2 ppm, and the capacity of the alumina at 2.0% was higher than for the neutral solutions. For these tests, the alumina was not pretreated, hence, the higher fluoride in the effluent (up to 1.8 ppm) during the initial period of adsorption, . However, this rapidly changed and the fluoride level dropped. If this initial small amount of fluoride passing through cannot be tolerated, then the alumina should be pretreated even for acidic systems

Effect of Flow Rate on Fluoride Removal Efficiency

For bed design purposes, the most important relationship is that between the efficiency and the flow rate. The data presented so far were measured at a flow rate of 6 bed volumes per hour, which is slow enough to enable the full bed capacity to be utilized. The efficiency of fluoride removal from a 20 ppm neutral solution at several higher flow rates .
At 12 bed volumes per hour, fluoride removal to ~0.2 ppm is still achieved and the capacity is similar to that at 6 bed volumes per hour.
At 16.4 bed volumes per hour, some efficiency is lost; the fluoride in the effluent ranges from 0.5 to 0.8 ppm and the alumina capacity at 1.0 ppm fluoride breakthrough is 1.3%.

At 24 bed volumes per hour the fluoride level falls in the range 1.0 to 1.5 ppm, and the alumina capacity is about 1.0% at the 1.5 ppm fluoride level.

These flow rate data are for 14 x 28 mesh alumina. It was noted that if the flow was stopped for several hours, subsequent to breakthrough, then restarted again, an improvement in fluoride removal occurred. This phenomenon has also been reported in the literature and suggests diffusion rate limitations.

Therefore, it follows that flow rate efficiency is affected by particle size. The smaller the particle size, the higher the flow rate that can be used, but this must be balanced against the higher pressure drop which results from smaller size material.

Interference From Other Ions

In practice, many aqueous streams to be treated will contain other components. These other components could have an effect on the fluoride removal efficiency. Therefore, any particular stream should actually be tested with alumina. to indicate the effect some frequently-encountered ions can have on the adsorption efficiency.

the fluoride removal efficiency is shown for a 10 ppm fluoride solution containing much larger amounts of sodium and one of the following three anions: chloride, sulfate, bicarbonate.
In all cases the fluoride effluent level is reduced to 0.2 ppm or less, but there are differences in alumina capacity for fluoride removal.
The effects of chloride and sulfate are very small, but the bicarbonate causes a major decline in capacity. For the feed solution containing 522 ppm bicarbonate, the capacity declines to 0.30%, compared to 1.2 to 1.45% for the other streams. Clearly the bicarbonate ion has a larger inhibiting effect; presumably competitive adsorption is occurring.

Effects of Bicarbonate at Various Concentrations

The presence of bicarbonate at the 500 ppm level reduces the fluoride adsorption capacity of the alumina by 75 to 80%. In practice, bicarbonate exists in raw water streams at a variety of levels. The relative effect of different bicarbonate levels .
The curves show fluoride removal for 10 ppm feed solutions made from sodium fluoride plus 50, 100, 200, and 522 ppm bicarbonates.
In all cases the fluoride is always reduced to less than 0.2 ppm, but the total adsorption capacity of the alumina is considerably reduced.
Even for 50 ppm bicarbonate, the capacity is only 0.75%, which is about half that for the same solution without any bicarbonate.
Higher levels of bicarbonate continue to depress the adsorption capacity, but the incremental effect is less.

The above data indicate that special consideration has to be given to designing a system for fluoride removal in the presence of bicarbonate. Either the bicarbonate has to be removed first, or the system has to be designed for much lower fluoride capacities. This subject is also discussed further in the section on regeneration.

Regeneration Methods

Most fluoride removal applications are long term and necessitate regeneration of the alumina.
There are three known methods for regeneration: (1) NaOH/H2SO4, (2) Al2 (SO4)3 and (3) H2SO4. The conditions for some laboratory tests on regeneration
.
The effectiveness of the different regenerations is judged by their subsequent adsorption performance . Note that the intention here is to present a range of regeneration conditions, and none of them should be taken as necessarily being the optimum.


Regeneration Data for Activated Alumina

Type F Solution Regenerant Total Volume Time
(ml)/100g A12
________________________________________________________________________
A NaF (1) 1% NaOH 1000 100 minutes
(2) H2O 760 80 minutes
(3) 0.05N H2SO4 1000 100 minutes
________________________________________________________________________
B NaF (1) 1%NaOH 1400 180 minutes
(2) H2O 2000 80 minutes
(3) 0.05N H2SO4 1000 90 minutes
________________________________________________________________________
C NaF 2%Al2(SO4)3
•18 H2O 1290 6.5 hours
________________________________________________________________________
D NaF 2%Al2(SO4)3
•18 H2O 1090 5.25 hours
________________________________________________________________________
E NaF 2%Al2(SO4)3
•18 H2O 2650 24 hours
________________________________________________________________________
G NaF 2% Al2(SO4)3
•18H2O 8000 5 hours
________________________________________________________________________
H CaF2 2% Al2(SO4)3
•18 H2O 1260 5.75 hours
________________________________________________________________________
J NaF 2% H2SO4 8000 5 hours

___________________________________________________________

The NaOH/H2SO4 method has been well proven in large scale operation at potable municipal water treatment plants across the country. Also the laboratory data shown here indicate that it is the most effective method.

The fluoride removal performance of A-2 after regeneration with 1% NaOH/H2O rinse/0.05N H2SO4. The curves are for 10 ppm and 20 ppm fluoride streams made up from NaF. Note that the regeneration procedure for B takes longer time and uses more NaOH than A. It results in a slightly higher adsorption capacity for the alumina. The 1% NaOH strips the fluoride off the alumina, than the 0.05 H2SO4 neutralizes residual caustic left after the rinse
step and also reactivates the alumina.

The use of aluminum sulfate as a regenerant is described in the literature for laboratory scale testing. The fluoride adsorption performance of alumina after regeneration with 2% Al2(SO4)3 •18 H2O .
In note that after startup the fluoride effluent levels are slow in approaching ~1 ppm and do not fall below this 1 ppm level. The fluoride capacity of the alumina is also lower in the initial cycle for C and D, but in E, where more aluminum sulfate solution and longer times are used, the original capacity of the alumina is restored.
a case where considerably more aluminum sulfate (8.0L/100 g alumina) is used.
The regeneration is much more effective, with fluoride effluent levels of 0.2 ppm being achieved. Note that, even so, the effluent level is slow coming down to this 0.2 ppm level, and also the alumina capacity is slightly less than for the original adsorption step.

A case with 2% H2SO4 :
The use of 2% H2SO4 is mentioned in the literature. For the example in Figure 10, 8L 2% H2SO4/100 g alumina is used more than 5 hours i.e., the same conditions as for the aluminum sulfate regeneration .
The regeneration efficiencies are essentially the same. However, the use of 2% H2SO4 for regeneration is not recommended because it can have a harmful effect upon the physical strength of the alumina over a period of time.

EXAMPLE OF TREATMENT OF A GROUND WATER

A water source containing 10 ppm fluoride required treatment to reduce the fluoride to <1 ppm. This particular example illustrates the treatment of water containing significant amounts of bicarbonate. The chemical analysis of the water is given in Table II.

Table II. Raw Water Analysis

PPM PPM

F 10.0 Fe 0.06
Cl 182 As 0.12
SO4 21 Na 150
PO4 <.02 Ca 135
HCO3 170 Mg 0.35

The results of treating this water with alumina are shown
First note that very little fluoride removal is achieved with untreated alumina The alumina pretreated with aluminum sulfate reduces the fluoride to <0.2 ppm and has a capacity of 0.46 g F/100 g alumina
This is about the capacity for a bicarbonate concentration of 170 ppm based upon the data.

after successful regenerations of this same alumina column.
the adsorption after regenerating with 1.4L 1% NaOH/100 g alumina more than 90 minutes, rinse, then 1L 0.05N H2SO4/100 g alumina. There is a dramatic reduction in total capacity for this cycle. (0.22 g fluoride/100 g alumina) although fluoride is reduced to the 0.2 pp
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://technolabelbahaagp.yoo7.com
Admin
Admin
Admin


عدد المساهمات : 3762
تاريخ التسجيل : 15/09/2009
العمر : 57
الموقع : مصر

FLUORIDE REMOVAL BY ACTIVATED ALUMINA/ازالة الفلوريد بالالومينا النشطة المحببة Empty
مُساهمةموضوع: الالومينا النشطة active alumina    FLUORIDE REMOVAL BY ACTIVATED ALUMINA/ازالة الفلوريد بالالومينا النشطة المحببة Emptyالخميس ديسمبر 30, 2010 3:02 pm

Activated Alumina
Activated alumina treatment is used to attract and remove contaminant, like arsenic and fluoride, which have negatively charged ions.

Activated alumina (a form of aluminum oxide) is typically housed in canisters through which source water is passed for treatment. A series of such canisters can be linked together to match the water volume requirements of any particular system.

As alumina absorbs contaminants, it loses its capacity to treat water. Therefore, treated water quality must be carefully monitored to ensure that cartridges are replaced before they lose their treatment effectiveness. Also the capacity of the alumina is strongly influenced by the pH of the water. Lower pH is better. Many systems use acid pretreatment to address this need.

Source water quality is an important consideration for activated alumina systems. The treatment agent will attract not just contaminants, but many other negatively charged ions found in source water. This can limit the alumina’s ability to attract and remove the targeted contaminants.

Activated alumina technology can be expensive, and many of its costs are associated with disposal of the contaminated water that is created when alumina is purged of contaminants and “reset” for future use. Large-scale activated alumina systems also require a high level of operational and maintenance expertise, and consequently are relatively rare.

Small-scale systems are more common and can be tailored to accommodate any specific water volume requirements.
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://technolabelbahaagp.yoo7.com
Admin
Admin
Admin


عدد المساهمات : 3762
تاريخ التسجيل : 15/09/2009
العمر : 57
الموقع : مصر

FLUORIDE REMOVAL BY ACTIVATED ALUMINA/ازالة الفلوريد بالالومينا النشطة المحببة Empty
مُساهمةموضوع: active alumina balls specifications   FLUORIDE REMOVAL BY ACTIVATED ALUMINA/ازالة الفلوريد بالالومينا النشطة المحببة Emptyالخميس ديسمبر 30, 2010 3:28 pm

Activated Alumina Balls

Activated Alumina is an aluminium oxide that is highly porous and exhibits tremendous surface area. Activated Alumina is resistant to thermal stock and abrasion and will not shrink, swell, soften nor disintegrate when immersed in water.

Applications:
Purification of water (removal of metallic traces, BF3, TBC, HCl, HF and fluorinated hydrocarbons)
Drying of air and gases such as steam cracked gases, catalytic reforming recycle gas, synthetic gas, natural gas, CO2
Physical Properties


Parameter Values
Shape spherical beads
Size 3-5, 5-8 mm
Surface Area 325 – 390 m2/gm
Adsorption capacity @60RH 19-22
Bulk Density g/cc 0.75 – 0.90 gm / ltr
Bed Crushing Strength %min 92
Loss on ignition, 1000 deg C 7.0 – 8.0
Free moisture, % 2.0
الرجوع الى أعلى الصفحة اذهب الى الأسفل
https://technolabelbahaagp.yoo7.com
 
FLUORIDE REMOVAL BY ACTIVATED ALUMINA/ازالة الفلوريد بالالومينا النشطة المحببة
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1
 مواضيع مماثلة
-
» Granular activated carbon/الكربون النشط المحبب
» مبادئ تصميم خزانات الترسيب للمعالجة البيولوجية الثانوية بطريقة الحماه النشطة/General design guidelines for secondary sedimentation as a part of the activated sludge process
» ازالة املاح الكالسيوم من مياه البحر بالترشيح باستخدام الزيوليت الطبيعى REMOVAL OF SEAWATER HARDNESS CONTAIN Ca2+ ION USING NATURAL ZEOLITE AS ADSORBTION
» معالجة مياه الشرب(طرق ازالة الزرنيخ من مياه الشرب)/arsenic removal from drinking water1
» الفلاتر الكربونية المحببة والبيليت المضغوطة

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
مجموعة تكنولاب البهاء جروب :: قسم معالجة وتنقية وتحاليل المياه :: المكتب الاستشارى العلمى-
انتقل الى: